COPY RIGHTS : TO AVOID COPYRIGHT VIOLATIONS, ALL POSTS ARE SHOWN ALONG WITH SOURCES FROM WHERE ITS TAKEN. PLEASE CONTACT ME IN MY EMAIL SALEEMASRAF@GMAIL.COM , IF YOU ARE THE AUTHOR AND YOUR NAME IS NOT DISPLAYED IN THE ARTICLE.THE UNINTENTIONAL LAPSE ON MY PART WILL BE IMMEDIATELY CORRECTED.

I HAVE SHARED ALL MY PRACTICAL WATER TREATMENT EXPERIENCES WITH SOLVED EXAMPLE HERE SO THAT ANYBODY CAN USE IT.

SEARCH THIS BLOG BELOW FOR ENVO ,COMPACT STP,ETP,STP,FMR,MBBR,SAFF,IRON,ARSENIC,FLUORIDE,FILTER,RO,UASB,BIO GAS,AERATION TANK,SETTLING TANK,DOSING,AMC.

SEARCH THIS BLOG

Showing posts with label saleem asraf syed imdaadullah. Show all posts
Showing posts with label saleem asraf syed imdaadullah. Show all posts

Thursday, September 01, 2016

Saleem Asraf Syed Imdaadullah, Founder, Syed Envo Protect (I) Pvt Ltd & ENVO PROJECTS NEW DELHI INDIA



Saleem Asraf Syed Imdaadullah, Founder, Syed Envo Protect (I) Pvt Ltd in the year 1994 & ENVO PROJECTS, NEW DELHI in the year 2001

Source of the article : https://yourstory.com/2009/07/saleem-asraf-syed-imdaadullah-founder-syed-envo-protect-i-pvt-ltd/

Saleem Asraf Syed Imdaadullah is a man with a vision – a vision of a more ecologically conscious, greener world. And for this environmental engineer and former guest lecturer of the Delhi College of Engineering, the path to a green earth was paved in 1994, with Syed Envo Protect (I) Pvt Ltd. Today, Envo Protect is a leading environmental organization, providing consultancy services for turn key projects in water and waste water treatment, as well as other environmental issues such as the design and construction of effluent and sewage treatment plants, water softeners, fire fighting systems and management of water resources including water conservation through rainwater harvesting and artificial recharge of ground water. The company provides services across industry sectors – from the hospitality industry to food processing and even pharmaceutical units. Their other focus area is the reuse of biodegradable solid waste and its management. “We are into vermiculture, composting, energy pellets etc.
” explains Saleem. “This is encouraging the use of natural compost instead of chemical fertilizer. Chemical fertilizer is the basic source of many diseases in humans. Western countries are going back to organic manure again.”
Leading a team of nine at his Delhi office, Saleem has expanded his operations over the years to open branches in Guwahati, Chennai and Lucknow. With a year-on-year growth of 5 per cent, it is this young entrepreneur’s dream to open a branch in every Indian state by 2010. “It’s the challenge and the power of creating something new everyday,” that drives Saleem to consider expansion plans even at a globally slow economic time.
Challenges have come in plenty for Saleem, and he’s learnt it the hard way, arguably the only way for successful entrepreneurship. “My biggest challenge was taking up an Upflow Anaerobic Sludge Blanket (UASB) waste water treatment plant project of the scale of 20 lakh litres per day capacity. This was a project worth Rs.1.2 crores that I took up at a time when I did not know even the rudiments of UASB. I contacted eminent consultants in Delhi College of Engineering, Jamia Millia Islamia, Aligarh Muslim University, and the Indian Institute of Technology Delhi. All of them refused to help me out. Then I took the plunge and started visiting many UASB plants designed by others and took an annual maintenance contract with one such plant. There I got first hand experience of an UASB system, its problem areas, the mistakes that consultants normally make. I learned from the bottom up. That project took a whole year of my life. But now I don’t need anybody to design an UASB system. There are very few consultants who are successful in UASB. Now, we are one of them.”
Saleem started small, using his savings from lectureship as seed money to set up Envo Protect. “Nobody has helped me out with money till date. I bought a second hand moped with Rs. 1800 to move around in Delhi and got my first consultancy fees of Rs. 5000 for designing an Effluent Treatment Plant (ETP) in 1994.” It’s been a long journey from there to projects worth crores, and this is where Saleem’s success is noteworthy.
Saleem is also the President of Green Shield, an NGO with operations in Delhi, UP, Haryana and the North-East. Green Shield has been a trendsetter in many conservationist and pollution control exercises. They provide free vocational training in operating effluent and sewage treatment plants. As the only institution offering such courses in India, Green Shield creates employment opportunities for youth from socially and economically backward areas through its courses.
“We have provided technical expertise to Engineering Diploma holders from Assam and helped them in getting jobs outside the North Eastern states. This programme was sponsored by the government Of Assam. It created an opportunity for the educated youth of insurgency-hit Assam to get assimilated into the mainstream work force of India,” says Saleem. Free eye check-ups at nursery schools in the slums of Delhi, and highly technical guidance in environmental engineering to NGOs in rural areas are some of the other achievements of Green Shield. “Waste-to-wealth technology” – unique methods adopted to convert municipal waste into usable resources is a prime objective of the NGO.
The number of hits on Saleem’s blog (www.saleemindia.blogspot.com) is proof of the growing popularity of his enterprise. “I am getting calls from all over India and abroad for technical help,” he smiles. Training and experience are the keys to successful entrepreneurship, in his opinion. “And there is no shortcut to hard work,” he signs off.
ENVO PROJECTS FACEBOOK PAGE : www.facebook.com/envoprojects
ENVO PROJECTS  WEB  SITE  www.envoprojects.com
Whatsapp +919899300371

My own Brand is "ENVO". My company ENVO PROJECTS is based is New Delhi and in the service of the nation since 1994.

Eastern Envo Protect ,Guwahati, Assam , India is One another company i helped to create and the founder syed mehdi hussain absorbed my staff bubu , abul etc from my Delhi based company Envo Projects, New Delhi. www.envo.8m.com.One another wonderful experience of life.Our first project in assam is Pragati Hospital & Research Center,NH Bypass,Sivsagar,Assam where we installed Incinerator for bio medical waste management for which i brought old Ali Miya from Delhi to make the plant.Ali Miya is former employee of  M/s Thermax Ltd.



The philosophy behind my work in environmental engineering

NOW HAVE I DONE SOMETHING OR STILL DONT HAVE ANY GOAL IN LIFE.no, I have found in Quran majeed myself that the world is a gift from Allah and nobody has the right to destroy it… .So we don't have any right in making our rivers into drain (read yamuna river,bhorolu river), polluting our air with our car exhaust, littering the greens with solid waste…. I am trying my best in this regard …after forming ENVO.

PREAMBLE OF ENVO

Nature is a gift to us . No individual or organisation has the right dto utilise its resources in such a way that damage or inconvenience is caused  to  people of society . we all have a social responsibility to protect and preserve a clean and green environment. The goale of profit maximisation and customer satisfaction should be surbordinate to the social need and responsibilities. The present concern has been brought about by the health of humans, living being, tree , structures, monuments and all other things.

THINGS I LEARNT :

I understood that my livelihood (RIZQ)  cant be  taken away by  anyone.  Put your  best  efforts in what you do and than leave the result to ALLAH. I have plan but Allahs plan is much much better than mine. I have firm belief in ALLAH.  

During this journey many people came and left me. I thank all of them for their contribution for my growth. They are destined to be with me for that particular period. This is Allah’s plan.

Always sleep with a clean heart. I know many of us get wronged throughout the day or have gotten wronged in the past. Forgive. Not only forgive, but forgive and forget. Dont even hold a grudge against that person in your heart. Keep your heart completely pure.Forgive brothers and sisters before you sleep each night. this is one of the practices of the greatest people ever to live and this is how we will reach those highest levels of spirituality.


LOVE HUMANITY IRRESPECTIVE OF RELIGION, LOVE ANIMALS, TREES AND ALL OF GODS CREATIONS. IF YOU CAN NOT LOVE AND ADMIRE GODS CREATION, HOW CAN YOU THINK ABOUT ADMIRING THE GREATNESS OF GOD. 

Monday, April 30, 2012

Slaughter house ETP Design 500 KLD Capacity By saleem asraf syed imdaadullah


Slaughter house ETP Design 500 KLD Capacity By saleem asraf syed imdaadullah





  • FLOW CHART

    • Influent → Coarse screening → oil trap → Equalization - drum solid separator → DAF (FOG recovery) → Primary clarifier → Anaerobic reactor (UASB) → Aerobic Aeration tank 1 - clarifier 1 - Aeration tank 2 - clarifier 2 - disinfection tank →pressure sand filter - activated carbon filter - Coagulation + UF/MF → RO → (Permeate → reuse) ; RO concentrate → Evaporator or MD → Crystallizer → Solids offsite/disposal.
  • Assumptions (used everywhere)

    • Plant flow (average): Q = 500 m³/day = 20.833 m³/hr (continuous).

    • Representative influent (from your earlier inputs / typical slaughterhouse): COD 5,000 mg/L, BOD₅ = 2,000 mg/L, TSS = 2,000 mg/L, FOG = 1,000 mg/L.

    • Anaerobic (UASB) COD removal: 65% (design basis). Result used downstream. 

    • Design safety / sizing factors: apply 20–30% spare capacity or safety factor on hydraulic areas/ membrane areas and 30% on membrane area unless noted. Where design ranges exist I choose conservative mid/high values for reliability. Design references are shown inline


    1) Coarse screening

    Purpose: remove rags, large bones, plastics; protect downstream pumps/ drum screen.

    Design:

    • Bar spacing: 10 mm (coarse) for slaughterhouse (use a finer 6 mm if many small solids).

    • Peak/continuous flow: 21 m³/hr → choose screening capacity for 30 m³/hr to allow surges.

    • Typical item: coarse channel screen or perforated step screen. Provide a wash/compactor or manual basket.

    • Headloss: design ~10–50 mm. Provide trash bin sized for daily accumulation (estimate ~10–20 kg/day coarse solids; depends on operations).

    Recommendation: stainless steel (SS304/316) with a bypass manual screen and access for cleaning.


    2) Oil trap / grease interceptor (before equalization)

    Purpose: remove free-floating oils/grease to reduce downstream fouling.

    Design basis & calculation:

    • Use 2 hours hydraulic detention (typical interceptor detention 30 min–2 hr for food industry grease traps; choose 2 hr to be conservative). 

    • Volume = Q_hr × detention = 20.833 m³/hr × 2 hr = 41.7 m³.

    • Use two compartments (inlet baffle + separation zone + cleanout sump). Depth ~1.2–1.8 m. For compact footprint pick 1.5 m depth → plan area = 41.7 / 1.5 = 27.8 m² → e.g., 7 m × 4 m footprint.

    Notes: provide skimming port, access manholes, sludge/grease collection tray. Material: GRP or SS depending on budget.


    3) Equalization tank (with drum solid separator)

    Purpose: dampen flow/load variations; allow coarse solids separation (drum screen) and chemical dosing if needed.

    Design assumptions:

    • For high-strength slaughterhouse waste, recommended EQ storage = 1–1.5 days to homogenize and give time for downstream chemical dosing/pH adjustments. I’ll size 1.5 days as in earlier plan. 

    Calculation:

    • Volume = Q × 1.5 day = 500 m³/day × 1.5 = 750 m³.

    • Provide mixing (slow mixers) to avoid short-circuiting; mechanical mixers or coarse bubble aeration to prevent septic conditions. If anaerobic pre-treatment is used immediately after EQ, DO control may be needed.

    • Drum screen: install as bypass/inline solids removal inside EQ: design for continuous throughput ~21 m³/hr. Typical drum screen flux (vendor dependent) handles dozens to hundreds m³/hr per unit; specify vendor model for Q=25 m³/hr with 1–2 mm perforations. Provide rakes, wash water and 1.5–2 hour solids hopper.

    Recommendation: EQ as rectangular concrete tank in 2 compartments (settling & buffer) with level control for equalization and automatic dosing skid for coagulant / pH if needed.


    4) DAF (FOG recovery)

    Purpose: remove dissolved/ emulsified oils & greases, remaining floatables; concentrate FOG for rendering or digestion.

    Design criteria (industry ranges):

    • Hydraulic Loading Rate (HLR) for DAF in meat processing: typically 5–10 m³/m²·hr (high-rate DAF); many vendors design 4–10 m³/m²·hr. I choose 6 m³/m²·hr (conservative, compact). 

    Calculation:

    • Hourly flow Qh = 20.833 m³/hr.

    • Required DAF area A = Qh / HLR = 20.833 / 6 = 3.472 m². Apply practical plate-pack geometry (effective area multiplies by plate factor 3–6). Choose a plate-pack DAF with plate pack factor 5 → actual tank footprint ≈ 3.472 / 5 = 0.695 m² (very compact) — vendors typically give modular units; choose a standard DAF rated for 25 m³/hr.

    • Typical recycle (saturation) ratio 10–20% → design recirc pump capacity ~ 5 m³/hr and air saturator at 4–6 barg. Sludge (float) concentration: 3–6% solids; expected daily DAF float ~ 200–350 kg dry solids (depends on FOG/TSS removal %).

    Notes: include polymer/coagulant dosing skid upstream, skimmer and float hopper with pump to sludge tank. Material: SS316 recommended.


    5) Primary clarifier (after DAF)

    Purpose: remove remaining settleable solids before biological treatment.

    Design criteria:

    • Surface overflow rate (SOR) for primary clarifiers (industrial): 25–40 m³/m²·day average. I’ll use 30 m³/m²·day (conservative). 

    Calculation:

    • Flow Q = 500 m³/day.

    • Area A = Q / SOR = 500 / 30 = 16.67 m². Add 30% safety factor → ~21.7 m². Choose a circular clarifier: area πD²/4 = 21.7 → D = sqrt(4×21.7/π) = ≈5.26 m → choose 6 m diameter clarifier.

    • Depth: 3.0–3.5 m. Volume ≈ area × depth ≈ 21.7 × 3.5 ≈ 76 m³. Provide sludge hopper and scum removal.

    Notes: Provide inlet baffle, flow-distribution box, sludge withdrawal pump to sludge handling.


    6) Anaerobic reactor — UASB 

    Purpose: remove bulk COD, generate biogas for energy recovery.

    Design basis used earlier (restated with steps):

    • COD influent = 2,500 kg/day (500 m³ × 5,000 mg/L). Design OLR = 4 kg COD/m³·day (conservative/mid-range for UASB on high-strength wastes). 

    Calculation:

    • Required UASB volume = COD load / OLR = 2,500 / 4 = 625 m³.

    • HRT = Volume / Q = 625 / 500 = 1.25 day = 30 hours. (UASB HRTs typically 12–48 hr for strong wastes; 30 h is conservative.) 

    • COD removal expected ≈ 60–70% → design 65% (1,625 kg/day removed). Remainder COD to aerobic stage ≈ 875 kg/day → concentration post-UASB ~1,750 mg/L COD.

    • Gas handling: CH₄ ≈ 0.35 m³ CH₄/kg COD removed → CH₄ ≈ 569 m³/day. Provide gas holder, condensate trap, H₂S mitigation (if H₂S high), flare/CHP skid. 

    Reactor geometry & internals: typical UASB height 4–6 m; provide gas–solid–liquid separator (GSL), influent distribution, sludge withdrawal. Material: concrete with internal lining or FRP/steel if modular.


    7) Aerobic treatment — Aeration tank 1 → Clarifier 1 → Aeration tank 2 → Clarifier 2 → Disinfection

    You specified two-stage aerobic with two clarifiers. I size the total aerobic system to reach polishing BOD ≈ <30 mg/L (ready for filtration + RO).

    Design approach: compute required aerobic volume from remaining BOD load after UASB and volumetric loading (kg BOD/m³·day).

    Step A — Estimate BOD load to aerobic:

    • Influent BOD load = 500 × 2,000 mg/L = 1,000 kg BOD/day.

    • Assume UASB removes 60% BOD (approx. aligned with COD removal), so BOD to aerobic = 1,000 × (1 − 0.60) = 400 kg/day. (This matches earlier quick calc.)

    Step B — Aerobic volumetric loading (typical):

    • For high-strength industrial effluent use volumetric organic loading (VLR) = 1.5 kg BOD/m³·day (conservative high-rate design). Range 0.5–3 kg/m³·day used in literature; 1.5 is reasonable for reliable removal. 

    Calculation:

    • Aeration basin total volume V = BOD to treat / VLR = 400 / 1.5 = 266.7 m³.

    • Split into two identical aeration tanks: V1 = V2 = 133.3 m³.

    • HRT total = V / Q = 266.7 / 500 = 0.533 day = 12.8 hr → per tank ≈ 6.4 hr HRT each (reasonable for high-rate activated sludge). 

    MLSS / SRT (guidance):

    • Choose MLSS near 3,500–4,500 mg/L for strong industrial BOD; pick 4,000 mg/L.

    • Calculate biomass mass: X × V = 4 kg/m³ × 266.7 m³ = 1,066.8 kg MLSS (total volatile solids basis).

    • Required sludge wasting (to maintain SRT) depends on chosen SRT; pick SRT = 8–12 days for conventional AS (choose 10 days). Then waste sludge VSS/day ≈ biomass / SRT = 1,066.8 / 10 = 106.7 kg VSS/day (dewater accordingly).

    Aeration (O₂) requirement:

    • O₂ required for carbonaceous BOD removal ≈ 1.42 kg O₂ / kg BOD removed (standard). So O₂ = 400 × 1.42 = 568 kg O₂/day

    • Aeration energy estimate: Standard Aeration Efficiency (SAE) for fine-bubble diffused aeration around 2.5 kg O₂/kWh (practical). Electrical energy ≈ O₂ / SAE = 568 / 2.5 = 227 kWh/day → average power ≈ 9.5 kW. (This is an indicative figure; blower and diffuser selection will refine it.) 

    Clarifiers (secondary) sizing:

    • Secondary clarifier SOR design basis: 30 m³/m²·day average (range 24–33). I’ll use 30 m³/m²·day. Include RAS flow in calculation (assume RAS = 100% of influent flow, i.e., equal to 500 m³/day). So flow to clarifier = influent (500) + RAS (500) = 1,000 m³/day

    • Area per clarifier = (flow to be treated by that clarifier) / SOR. If you have two parallel trains, each clarifier handles 500 m³/day influent + 500 m³/day RAS split — practical approach: two trains each sized for 500 influent + RAS 500 → clarifier area per train = 1,000 / 30 = 33.33 m². Add 20% safety → ~40 m². Choose circular clarifier diameter: D = sqrt(4×40/π) ≈ 7.14 m → pick 7.5 m dia, depth 3.5 m.

    Notes: provide scum removal, RAS pumps sized to maintain RAS rate (100% of influent) and sludge wasting pumps sized for 106.7 kg VSS/day to dewatering.


    8) Disinfection tank

    Purpose: final pathogen control before filtration and RO feed.

    Design:

    • If using chlorination (or sodium hypochlorite) for non-potable reuse: typical contact time 15–30 min at designed residual; but since water later goes to RO (which will remove pathogens) you can use modest disinfection. For a conservative design use 30 min contact time.

    • Volume = Q_hr × contact time = 20.833 m³/hr × 0.5 hr = 10.42 m³ (for 30 min). Depth 2–3 m → area ≈ 10.42 / 2.5 = 4.17 m² (say 2 × 2.5 m tanks in series).

    Notes: If using UV, design as per UV vendor (based on UVT and flow), and you can omit long contact time.


    9) Pressure sand filter (PSF) → Activated carbon filter (GAC) → Coagulation + UF/MF

    Purpose: final particulate removal and taste/odor/organics polishing to protect RO.

    Pressure Sand Filter (rapid sand / multimedia)

    Design:

    • Filtration rate: 5–10 m³/m²·hr for pressure sand (pick 6 m³/m²·hr conservative). 

    • Flow for reuse water (after disinfection it's still 500 m³/day incoming, but we intend to send RO feed after coag+UF; we should size filters for RO feed flow which is the permeate target + recycle; practically RO feed = UF permeate ≈ ~400 m³/day permeate but feed to RO is 500? To be safe, filter the full plant flow or the UF feed. I’ll size filters for 500 m³/day = 20.833 m³/hr).

    • Area = Qh / rate = 20.833 / 6 = 3.47 m². Use two units in parallel for service/cleaning; each ~2 m² (e.g., 1.6 m dia pressure vessels).

    Activated Carbon Filter (GAC)

    Design:

    • Empty bed contact time (EBCT) typical 10–20 minutes for organics removal. Choose 15 min.

    • Volume = Q_hr × EBCT = 20.833 m³/hr × 0.25 hr = 5.21 m³ EBCT. Two parallel vessels, each 2.6 m³. Bed depth 0.8–1.0 m → footprint modest. Service flow velocity and contact time controlled.

    Coagulation + UF/MF (pre-RO polishing)

    Coagulation: Jar-tests required; typical dosing alum/Fe + polymer before UF.

    UF sizing (pre-RO):

    • Earlier we used UF flux 50 L/m²·hr typical for industrial UF with robust membranes. That gave area ≈ 417 m²; add 20% → ~500 m². (UF flux varies widely; vendors will provide module counts.) 

    Practical UF layout: choose skid with multiple modules (e.g., 20–40 modules) and CIP system. UF retentate returned to sludge handling or to anaerobic digest as co-substrate (if acceptable).


    10) Reverse Osmosis (RO) — staged for high recovery

    Purpose: produce high-quality permeate for reuse and generate concentrate for ZLD.

    Design assumptions & basis:

    • Target RO recovery 80% single-pass (common for industrial brackish), producing 400 m³/day permeate and 100 m³/day brine. Adjust antiscalant and pH for scaling ions. 

    • Choose conservative RO flux 15 L/m²·hr for challenging feed (low flux prevents rapid fouling).

    • Permeate hourly flow = 400 m³/day ÷ 24 = 16.667 m³/hr = 16,667 L/hr.

    • Required membrane area = 16,667 L/hr ÷ 15 L/m²·hr = 1,111 m². Add 30% safety / spare → ~1,444 m² total membrane area. (Vendors will quote element counts; e.g., 8-inch elements ~37 m² each — you'd need ~39 elements; multiply by staging and arrays.)

    RO high-pressure pump energy: typical range 3–7 kWh/m³ depending on salinity and configurations. Use 4 kWh/m³ baseline → RO electrical = 400 × 4 = 1,600 kWh/day (indicative). 

    Notes: include antiscalant, acid dosing, high-pressure pump with VFD, permeate polishing line, concentrate recirculation piping.


    11) RO concentrate → Evaporator (or Membrane Distillation) → Crystallizer (ZLD)

    Purpose: concentrate brine to solids; produce dry salts for disposal — achieve Zero Liquid Discharge.

    Design approach (as before):

    • Brine from RO: 100 m³/day. Target final liquid <10 m³/day (overall 98% recovery). Need to evaporate 90 m³/day (convert to vapor). 

    Evaporator energy estimate:

    • Multi-effect evaporators with thermal integration typically ~100–200 kWh(th)/m³ evaporated depending on feed and number of effects. Use 150 kWh(th)/m³ for planning → thermal energy = 90 × 150 = 13,500 kWh(th)/day. (If MD chosen, low-grade heat can be used; MD energy may be less electrical but needs heat input and has scale/maintenance issues.) 

    Crystallizer & solids handling:

    • Expected solids mass: depends on salt concentration in RO brine (unknown without analysis). For conservative mass-balance: if initial dissolved solids (TDS) ~10,000–30,000 mg/L machine, solids produced could be hundreds to a few thousand kg/day. Pilot crystallizer tests will fix numbers. Provide conveyors, rotary drier or filter press to produce dry salt cake, storage shelter and transport arrangements.

    Recommendation: integrate UASB biogas into a steam boiler or thermal oil loop to supply part of evaporator heat (biogas from UASB ~569 m³ CH₄/day ≈ 5,653 kWh thermal — realistically supply ~40% of evaporator heat). Evaluate fossil fuel backup and heat recovery from engines/CHP. 


    12) Solids offsite / disposal

    • DAF float: concentrated FOG and solids (3–6% solids) — send for rendering, co-digestion, or dewater and landfill as per regulations.

    • Primary/secondary sludge: dewater (centrifuge/belt press) to 20–30% DS, then compost, incinerate or co-process depending on local rules. Expected dewatered cake ~200–500 kg DS/day (estimate). Pilot and lab dewatering tests required. 


    Quick summary table (key numbers)

    • Flow: 500 m³/day

    • Oil trap volume: ~42 m³ (2 hr detention)

    • EQ tank: 750 m³ (1.5 day) with drum screen (rated ~25–30 m³/hr)

    • DAF area: ~3.5 m² (plate pack unit, vendor module for 25 m³/hr)

    • Primary clarifier: ~22 m² area → choose 6 m dia × 3.5 m depth (vol ~95 m³)

    • UASB: 625 m³ (HRT 30 hr), CH₄ ≈ 569 m³/day

    • Aeration tanks (total): 266.7 m³ (two tanks of 133.3 m³ each), total HRT 12.8 hr

    • Secondary clarifiers: area per clarifier ~40 m² (choose 7.5 m dia) — two trains

    • Disinfection tank: ~10.4 m³ (30 min contact)

    • PSF area: ~3.5 m² (2 units parallel)

    • GAC EBCT volume: ~5.2 m³ (two vessels)

    • UF area (pre-RO): ~500 m² (vendor modules)

    • RO membrane area: ~1,444 m² (flux 15 L/m²·hr, 80% recovery)

    • RO permeate: 400 m³/day; brine: 100 m³/day

    • Evaporator duty (to evaporate 90 m³/day): ~13,500 kWh(th)/day (planning basis)

    • Aeration O₂: ~568 kg O₂/day → aeration energy ≈ 227 kWh/day (indicative)

    • RO electrical: ~1,600 kWh/day (indicative)

    • Pilot / testing required for RO fluxes, UF flux, DAF performance, evaporator energy and crystallizer solids composition.