COPY RIGHTS : TO AVOID COPYRIGHT VIOLATIONS, ALL POSTS ARE SHOWN ALONG WITH SOURCES FROM WHERE ITS TAKEN. PLEASE CONTACT ME IN MY EMAIL SALEEMASRAF@GMAIL.COM , IF YOU ARE THE AUTHOR AND YOUR NAME IS NOT DISPLAYED IN THE ARTICLE.THE UNINTENTIONAL LAPSE ON MY PART WILL BE IMMEDIATELY CORRECTED.

I HAVE SHARED ALL MY PRACTICAL WATER TREATMENT EXPERIENCES WITH SOLVED EXAMPLE HERE SO THAT ANYBODY CAN USE IT.

SEARCH THIS BLOG BELOW FOR ENVO ,COMPACT STP,ETP,STP,FMR,MBBR,SAFF,IRON,ARSENIC,FLUORIDE,FILTER,RO,UASB,BIO GAS,AERATION TANK,SETTLING TANK,DOSING,AMC.

SEARCH THIS BLOG

Showing posts with label MBBR. Show all posts
Showing posts with label MBBR. Show all posts

Thursday, March 10, 2016

ENVO COMPACT MBBR STP

ENVO COMPACT MBBR STP
ENVO COMPACT 50

OTHER MODELS






























PRICE LIST OF COMPACT STP (SEWAGE TREATMENT PLANT)

Capacity
Ex Delhi Cost 
 5  kld
Please contact for price
10 kld
      
25 kld
     
30 kld
     
   
50 kld
     
100 kld
      
Note:
1.Variation from our standard make or standard
design will vary the cost mentioned.
2.All Taxes Extra as applicable
3.All Transportation charges extra as actual.

An introduction to MBBR (moving bed biofilm reactor )/ FM Reactor/ FAB /FMR Reactor wastewater treatment

When communities of microorganisms grow on surfaces, they are called biofilms. Microorganisms in a biofilm wastewater treatment process are more resilient to process disturbances compared to other types of biological treatment processes.  Thus, biofilm wastewater treatment technologies can be considerably more robust especially when compared to conventional technologies like activated suldge process..
In the MBBR biofilm technology the biofilm grows protected within engineered plastic carriers, which are carefully designed with high internal surface area. These biofilm carriers are suspended and thoroughly mixed throughout the water phase. With this technology it is possible to handle extremely high loading conditions without any problems of clogging, and treat industrial and municipal wastewater on a relatively small footprint.

System description

The MBBR™ biofilm technology is based on specially designed plastic biofilm carriers or biocarriers that are suspended and in continuous movement within a tank or reactor of specified volume. The design of associated aerators, grids, sieves, spray nozzles and other integral parts to the reactor is also of great importance in making up the system as a whole .
The industrial and municipal wastewater is led to the MBBR™ treatment reactor where biofilm, growing within the internal structures of the biocarriers, degrade the pollutants.  These pollutants that need to be removed in order to treat the wastewater are food or substrate for growth of the biofilm.  The biocarrier design is critical due to requirements for good mass transfer of substrate and oxygen to the microorganisms  .  Excess biofilm sloughs off the biocarrier in a natural way .

An aeration grid located at the bottom of the reactor supplies oxygen to the biofilm along with the mixing energy required to keep the biocarriers suspended and completely mix within the reactor.

Treated water flows from reactor through a grid or a sieve, which retains the MBBR™ biocarriers in the reactor. Depending on the wastewater, the reactors are may be equipped with special spray nozzles that prevent excessive foam formation.

The MBBR is a biological aerobic degradation of organic pollutants. The process utilizes millions of tiny, polyethylene biofilm elements that provide a high surface area as a home for a vast, highly active bacteria culture. This fixed film process features a flexible reactor design, the ability to handle load increases without the need for extra tankage, and remains stable under large load variations, including temperature, strength or pH. Like the activated sludge process, the MBBR process utilizes the whole volume of an open tank. Unlike an activated sludge reactor, it does not require sludge return to operate effectively. In MBBR , addition of media quantity and Air Quantity is the Key Factor.

Total reactor volume of the MBBRs is designed for different hydraulic retention time for different types of waste water at average flows and than checked against peak flows. Essentially nutrient levels and DO levels are the only control points for the system.



Moving Bed Biofilm Bioreactor (MBBR) process uses the whole tank volume for biomass growth. It uses simple floating media, which are carriers for attached growth of biofilms. Biofilm carrier movement is caused by the agitation of air bubbles. This compact treatment system is effective in removal of BOD as well as nitrogen and phosphorus while facilitating effective solids separation.

Design and Construction Principles

Neutralised and settled wastewater passes through MBBR for reduction in BOD/COD. Most of the MBBR plants are provided with vertically or horizontally mounted rectangular mesh sieves or cylindrical bar sieves. Biofilm carriers are made up of high density (0.95 g/cm3) polyethelene. These are normally shaped as small cylinders with a cross inside and fins outside. The standard filling of carrier is  not more than 465 m2/m3. Generally, design load for COD-BOD removal is 20 g COD / m2d. Smaller carriers need smaller reactor volume at a given loading rate (as g/m2d) when the carrier filling is same. 

It is advisable to use MBBR in combination with a DEWATS  as a pre-treatment unit, depending on the local conditions and input characteristics. It is a very robust and compact alternative for secondary treatment of municipal wastewater, having removal efficiency for BOD 90 – 95% (low rate) and that of 75 – 80% for high rate. Average nitrogen removal is about 85%. There is no need for sludge recirculation. Phosphorus and faecal coliform reduction is feasible with additional passive (non-mechanical) or active (mechanical) system components.


A constantly operating MBBR does not require backwashing or return sludge flows. It has minimal head-loss. Coarse-bubble aeration in the aeration zone in the wastewater treatment tank provides ease of operation at low-cost. Agitation continuously moves the carrier elements over the surface of the screen thus preventing clogging. Maintenance of MBBR system includes screening, influent equalisation, clarifier system, sludge handling and integrated control system. There is no need to maintain f/M ratio as there is self-maintenance of an optimum level of productive biofilm. Skilled labour is required for routine monitoring and operations of pumps and blowers.

Friday, September 19, 2008

MEAT PROCESSING WASTE WATER TREATMENT LATEST TECH MBBR


Source: http://www.esemag.com/0300/waterlink.html
WASTE WATER TREATMENT: MBBR - MOVING BED BIOFILM REACTOR TECHNOLOGY
The MBBR is a biological aerobic degradation of organic pollutants. The process utilizes millions of tiny, polyethylene biofilm elements that provide a high surface area as a home for a vast, highly active bacteria culture. This fixed film process features a flexible reactor design, the ability to handle load increases without the need for extra tankage, and remains stable under large load variations, including temperature, strength or pH. Like the activated sludge process, the MBBR process utilizes the whole volume of an open tank. Unlike an activated sludge reactor, it does not require sludge return to operate effectively. In MBBR , addition of media quantity and Air Quantity is the Key Factor.
The original wastewater treatment system consisted of a chemical pre-treatment system, followed by an anaerobic system, which in turn was followed by an activated sludge process. with high chemical and operating costs





MBBR system replaced the chemical pre-treatment system. MBBRs were installed between the equalization tank (EQ) and the activated sludge system. Total reactor volume of the MBBRs is designed for different hydraulic retention time for different types of waste water at average flows and than checked against peak flows. Essentially nutrient levels and DO levels are the only control points for the system.

Effluent from the MBBR is sent to a dissolved air flotation unit, which removes 70-90% of the solids generated, prior to being discharged to the activated sludge system.

The MBBR reactors reduced the incoming organic load from an average soluble BOD by 50-70% . This reduction allowed the activated sludge process to treat the ammonia-nitrogen within the wastewater in a more efficient and effective manner, allowing a higher volume of treated water to be discharged to drain.


The initial MBBR biofilm unit process shaves the loadings peaks and any toxic inhibition effects while removing 50 to 70 percent of the incoming BOD. This pretreatment achieves 2 to 3 times increased capacity compared to a traditional activated sludge process while also being more compact. Furthermore, the MBBR process improves activated sludge characteristics making the activated sludge stage more inherently stable with a waste sludge that is easier to dewater.

The elements provide a large protected surface area for the biofilm and optimal conditions for the bacteria culture to grow and thrive.
The biofilm that is created around each carrier element protects the bacterial cultures from operating excursions to yield a very robust
system for those industrial facilities loaded with process fluctuations. The biofilm also provides a more stable "home" for the bacteria
to grow, so there is less space required compared to other biological systems and far less controls.
An MBBR can be designed for a new facility to remove BOD/COD from wastewater streams or for nitrogen removal.
Existing activated sludge plants can be upgraded to achieve nitrogen and phosphorus removal or higher BOD/COD capacity .











SALIENT FEATURES OF THE SYSTEM:

Robust
  • Stable Under Load Variations
  • Insensitive to Temporary Limitation
  • Consistent Treatment Results
  • Flexible
    • Customizable Reactor Shapes
    • Utilization of Existing Tanks
    • Upgrade Existing Plants
    • Efficient
      • Low Solids Generation
      • Low or No Polymer Required for
      • Liquid/Solids Separation

      • Trouble-Free

        • Easy to Operate
        • No Media Clogging
        • No Sludge Return


        Compact

        • Small Footprint
        • Low Capital Cost













        DETAILED DESIGN & ENGINEERING




        • Media Retention
        • To retain the media within the reator, a stainless steel wedgewire sieve is used. The vigorous action of the moving
      • bed continually scours the surface of the sieve eliminating the need for any maintenance.







        • Aeration Grid
        • A stainless steel grid mounted at the bottom of the reactor is engineered with perforations. The grid is connected to high efficiency
        blowers.. The aeration grid produces a medium bubble which provides the necessary mixing and maintains the dissolved oxygen
        to ~3 ppm.

        The bacterial cultures digest the soluble organics, gradually mature, and slough from the media. The cultures form a natural floc
        which can be easily separated from the water with the DAF unit. In this case and others, no chemical coagulant or polymer were
        necessary to achieve < 10 ppm TSS and over 90% BOD removal.



        Saleem Asraf Syed Imdaadullah
        Mobile : 9899300371
        311/22,Zakir Nagar,New Delhi-110025
        email: saleemasraf@gmail.com
        BLOG: http://saleemindia.blogspot.com